From Sierpinski Carpets to Directed Graphs

نویسنده

  • Martin Hülse
چکیده

Models of complex information processing based on artificial neural networks frequently apply fully connected or random graph structures. However, it is well known that biological neural systems operate on sparsely connected networks having properties quite distinct to random graphs. In this paper, a simple method is introduced for the deterministic generation of strongly connected digraphs. The method is inspired by Sierpinski carpets. Despite the large size of these digraphs, the distance between most of the nodes is short, that is, it scales logarithmically. It is further shown that important network properties, such as average degree and degree distribution, can directly be determined by the initial structure of this process. These findings lead to the formulation of general conditions providing a targeted generation of complex networks of arbitrary size. The circumstances under which these digraphs can show scale-free and small-world properties are discussed and finally possible applications of this method are outlined in the domain of artificial neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walks on Graphical Sierpinski Carpets

We consider random walks on a class of graphs derived from Sierpinski carpets. We obtain upper and lower bounds (which are non-Gaussian) on the transition probabilities which are, up to constants, the best possible. We also extend some classical Sobolev and Poincar e inequalities to this setting.

متن کامل

Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum

We consider a class of Gibbs measures on self-affine Sierpinski carpets and perform the multifractal analysis of its elements. These deterministic measures are Gibbs measures associated with bundle random dynamical systems defined on probability spaces whose geometrical structure plays a central rôle. A special subclass of these measures is the class of multinomial measures on Sierpinski carpet...

متن کامل

A trace theorem for Dirichlet forms on fractals

We consider a trace theorem for self-similar Dirichlet forms on self-similar sets to self-similar subsets. In particular, we characterize the trace of the domains of Dirichlet forms on the Sierpinski gaskets and the Sierpinski carpets to their boundaries, where boundaries mean the triangles and rectangles which confine gaskets and carpets. As an application, we construct diffusion processes on ...

متن کامل

Acyclic Edge-coloring of Sierpinski-like Graphs

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by χ′a(G). Sierpinski graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpinski gasket graphs Sn are the graphs naturally defined ...

متن کامل

Coupling and Harnack Inequalities for Sierpinski Carpets

Uniform Harnack inequalities for harmonic functions on the preand graphical Sierpinski carpets are proved using a probabilistic coupling argument. Various results follow from this, including the construction of Brownian motion on Sierpinski carpets embedded in Md , d > 3, estimates on the fundamental solution of the heat equation, and Sobolev and Poincaré inequalities. The Sierpinski carpets (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010